

A 4.2-9.2GHz Cryogenic Transformer Feedback Low Noise Amplifier with 4.5K Noise Temperature and Noise-Power Matching in 22nm CMOS FDSOI

Boce Lin^{1,5}, Hamdi Mani², Phil Marsh³, Richard Al Hadi⁴, Hua Wang^{1,5}

¹School of ECE, Georgia Tech, USA

²CryoElec LLC, USA

³Carbonics Inc, USA

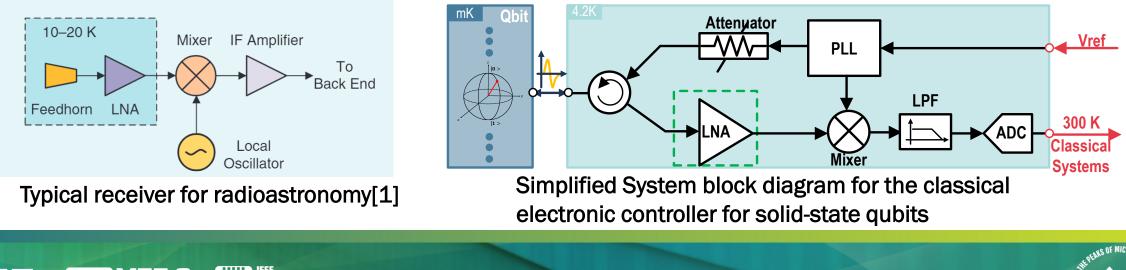
⁴Alcatera Inc, USA

⁵ETH Zurich, Switzerland

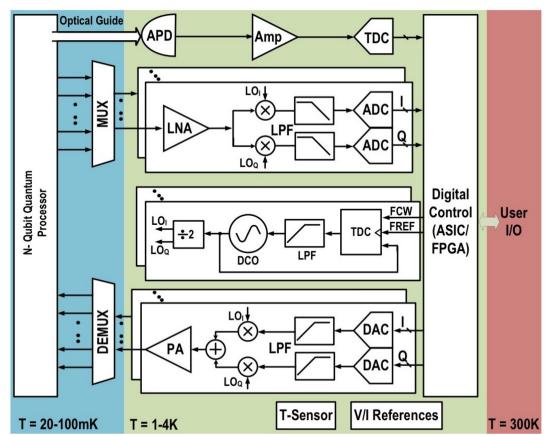
- Introduction
- Circuit Implementation
 - Simultaneous Noise and Power Matching

- Transistor Optimization
- Transformer Feedback
- Cryogenic Applications
- Measurement Results
- Summary

- Introduction
- Circuit Implementation
 - Simultaneous Noise and Power Matching
 - Transistor Optimization
 - Transformer Feedback
 - Cryogenic Applications
- Measurement Results


MTT-S

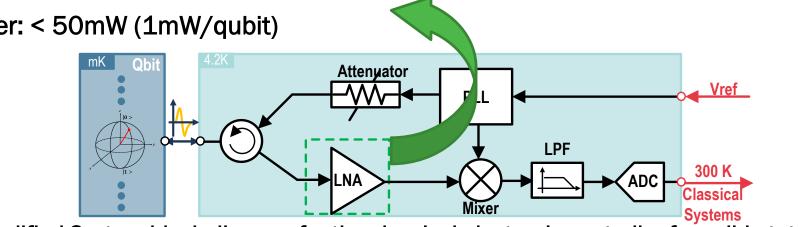
• Summary


- Cryogenic electronic circuits applications
 - > Deep space applications, Planetary applications, Radioastronomy, ...
 - Quantum computation applications
 - \rightarrow Classical electronic controller as intermediate interface between mK environment and room temperature environment

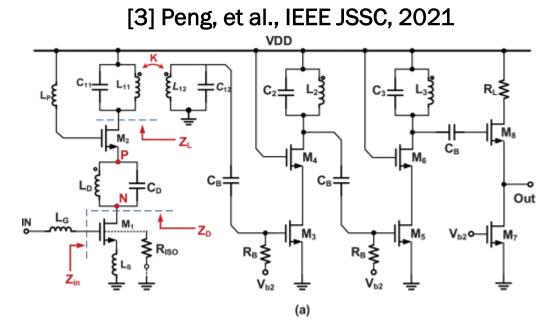
- Cryogenic CMOS controller
 - \rightarrow Existing large scale integration capability
 - \rightarrow Compatible with semiconductor Qubits
- Cryogenic CMOS low noise amplifier (LNA)
 - Required in most of the read-out systems to amplify the extremely weak read-out signal
 - Frequency multiplex requires a broadband operation

Example of multi-channel classical interface to a

quantum processor. [2]

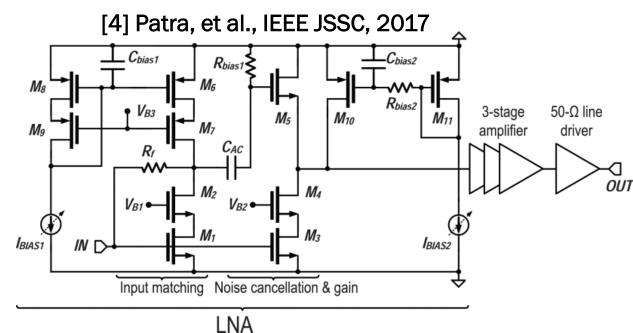


- Cryogenic LNA specifications for gate dispersive qubits read-out [3]
 - Operation Frequency: 4GHz 8GHz
 - Noise figure (NF): < 0.8 dB
 - Gain: > 40dB
 - Power: < 50mW (1mW/qubit)



Simplified System block diagram for the classical electronic controller for solid-state Qubits

6

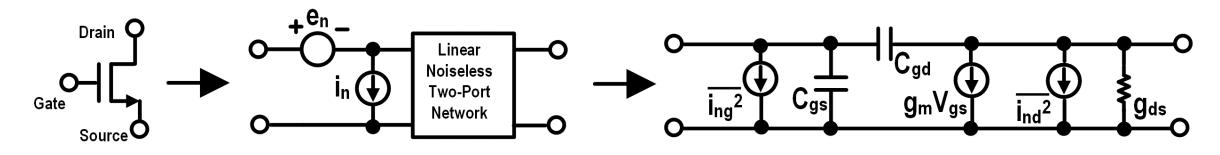


- Frequency: 4.6-8.2 GHz
- NF: 0.23-0.65dB
- Inductive degenerated Common source

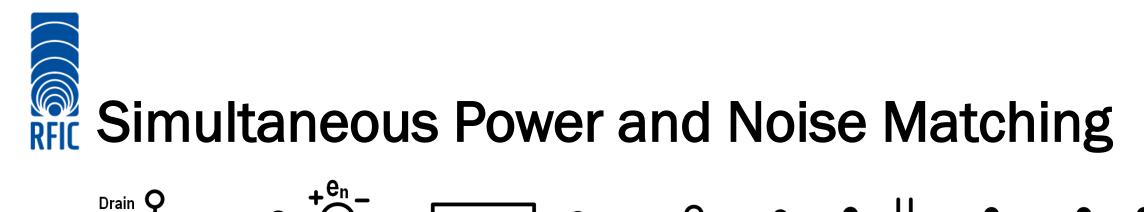
SOLID-STATE

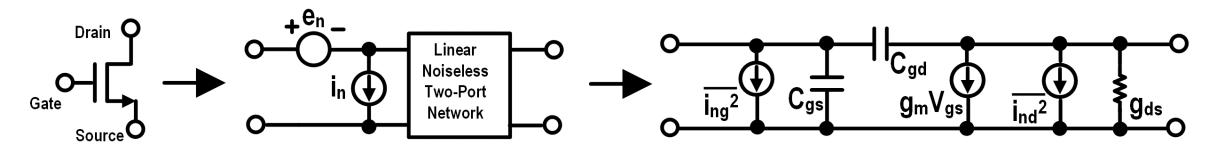
- Frequency: 0.1-0.5 GHz
- NF: 0.1-0.8dB
- Noise Canceling
- No broadband simultaneous
- power-noise matching

- Introduction
- Circuit Implementation
 - Simultaneous Noise and Power Matching

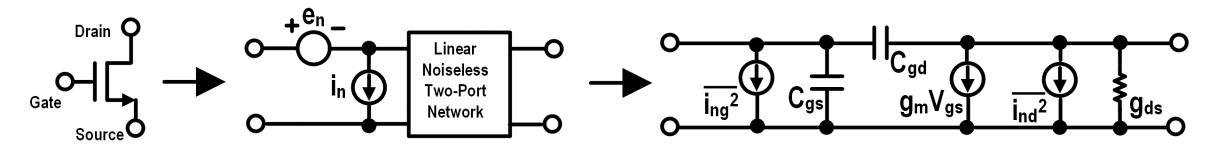

SÕLID-STATE

- Transistor Optimization
- Transformer Feedback
- Cryogenic Applications
- Measurement Results
- Summary




Simultaneous Power and Noise Matching

- Simple equivalent noise circuit for MOSFET device has been studied previously [5]
- Gate Induced Noise Current Source: $\overline{i_{ng}^2} = \frac{4kT\Delta f\delta\omega^2 C_{gs}^2}{5g_{d0}}$ (δ : The Excess Gate Noise Coefficient
- Drain Noise Current Source: $\overline{i_{nd}^2} = 4 \text{kT} \Delta f \gamma g_{d0}$
- Noise Source Correlation Coefficient: $c = \frac{\overline{i_{nd}^* i_{ng}}}{\sqrt{i_{nd}^2 i_{ng}^2}}$ •
- *y*: The Excess Drain Noise Coefficient
- $g_{d0} = \frac{g_m}{\alpha}$ is the output conductance when Vds = OV



- As discussed in [6], this two-port network achieves the minimum noise figure when:
 - $\begin{cases} G_{opt} = \omega C_{gs} \psi \\ B_{opt} = -\omega C_{gs} \xi \end{cases}, \qquad Where \quad \begin{aligned} \psi = \alpha \sqrt{(1 |c|^2)\delta}/5\gamma \\ \xi = 1 \alpha |c|\sqrt{\delta}/5\gamma \end{cases}$
- Achievable minimum Noise figure is independent of the value of source inductor

• [6] shows that simultaneous power and noise matching is achieved when:

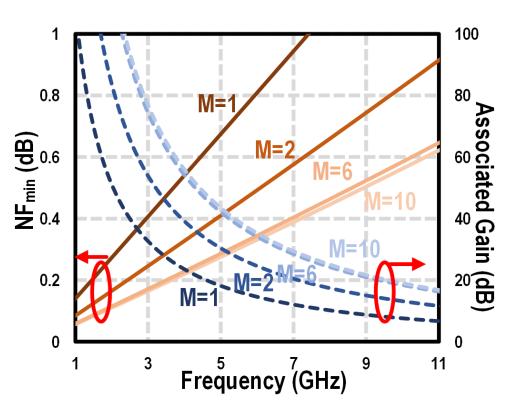
 $\psi^2 + \xi^2 = \xi$

11

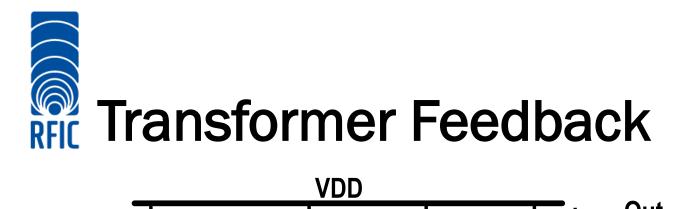
- 22nm CMOS FDSOI has low intrinsic C_{gs} at frequency band of interests

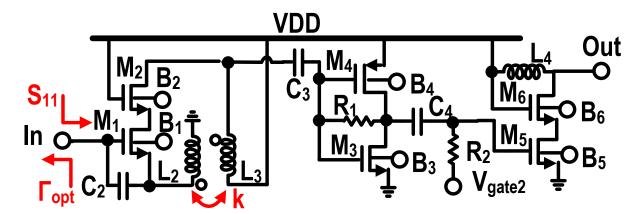
 \rightarrow External Cgs is added to provide an additional degree of freedom

- The noise parameters are dependent of frequency
- We follow the following design procedures:

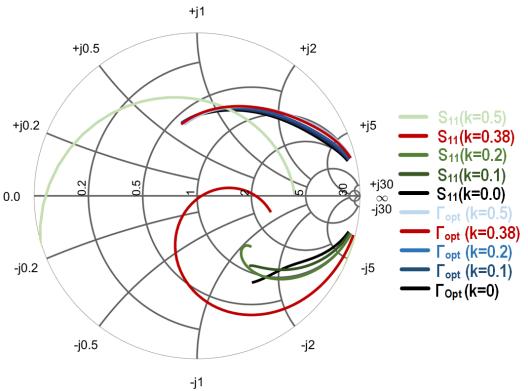

$$\begin{array}{c}
G_{opt} = \omega(C_{gs,ext} + C_{gs,int})\psi \\
B_{opt} = -\omega(C_{gs,ext} + C_{gs,int})\xi \\
\downarrow \text{Obtain} \\
\psi = \alpha\sqrt{(1 - |c|^2)\delta/5\gamma} \\
\xi = 1 - \alpha|c|\sqrt{\delta/5\gamma}
\end{array}$$

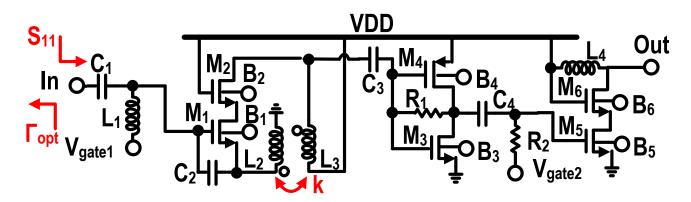
$$\begin{array}{c}
C_{gs,ext} \text{ tuning} \\
\psi^2 + \xi^2 = \xi \\
\downarrow \text{Obtain} \\
\psi^2 + \xi^2 = \xi \\
\downarrow \text{Obtain} \\
\downarrow \text{Obtain} \\
\xi = 1 - \alpha|c|\sqrt{\delta/5\gamma}
\end{array}$$



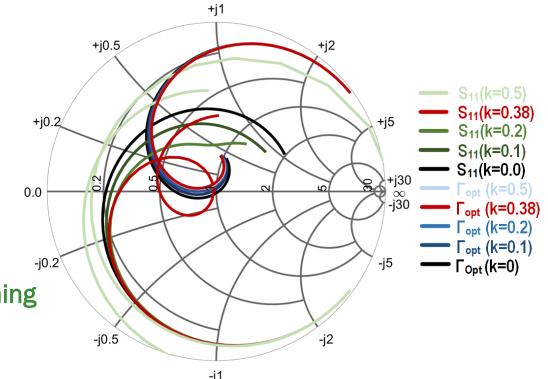

Core Transistor Optimization

- First common source transistor width is fixed at 220 $\mu m/20 nm$
- Break down the large transistor into several smaller parallel transistors
 - \rightarrow Improve minimum noise figure
 - \rightarrow Improve associated gain
- In this design:
 - 6 unit-transistors are combined
 - Unit transistor size: 35 µm/20nm

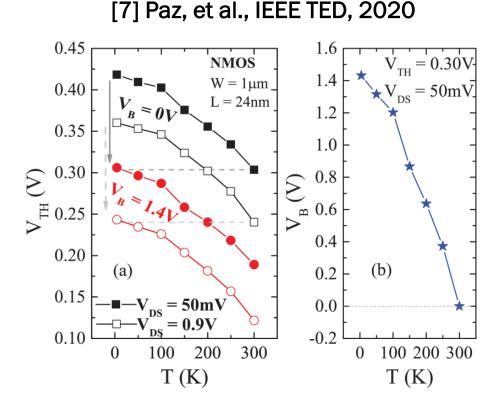




- Coupling factor (k) increase → Improve Power Matching
- Strongly coupled drain and source → Unstable Amplifier
- Optimum noise refection coefficient (Γ_{opt}) remains nearly unchanged

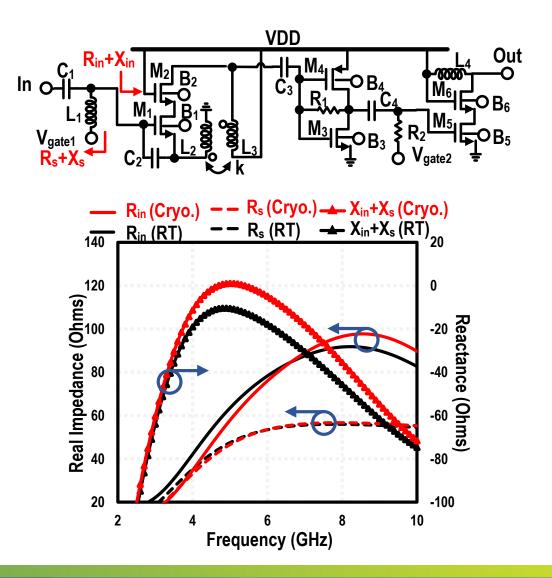


- Add input matching network
 - \rightarrow Achieve broadband simultaneous noise-power matching
 - \rightarrow Add loss which degrades total noise figure
- Broadband power and noise matching can be achieved by properly chosen k and input matching network



- Based on [7], the following changes are considered to design the active devices at cryogenic temperature:
 - Increase threshold voltage (V_{th})
 - \rightarrow Apply backgate bias can shift the V_{th,cryo} = V_{th,RT}
 - Increase the effective mobility due to the suppression of phonon scattering contribution

- \rightarrow Affects power matching conditions
- \rightarrow Simulate the response with increased gm



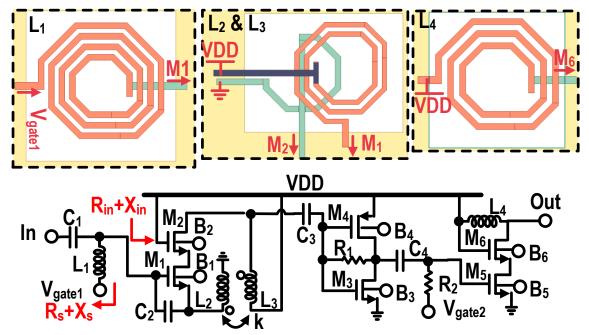
- Based on [8], the following changes are considered to design the passive EM components at cryogenic temperature:
 - Metal conductivity increases five-folds
 - → Metal Impurity
 - The substrate resistivity increases 1000x

→ Carrier Freeze-Out Effect

- Introduction
- Circuit Implementation
 - Simultaneous Noise and Power Matching
 - Transistor Optimization
 - Transformer Feedback
 - Cryogenic Applications
- Measurement Results

MTT-S

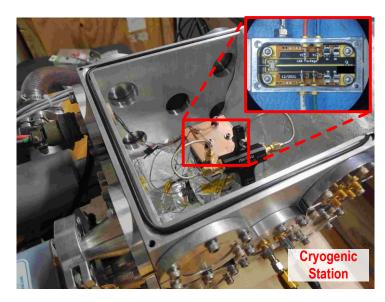
SSCS


IEEE SOLID-STATE 18

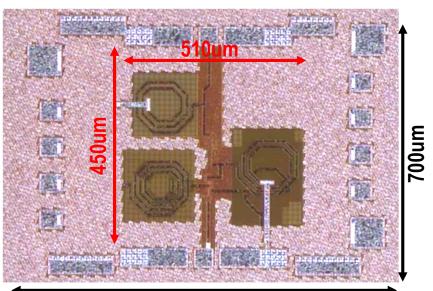
Summary

• The implemented circuit schematic and components values

SOLID-STATE


Lı	L_2	L ₃	L_4	Cı	
1.05nH	300pH	1.15nH	1nH	1pF	
C ₂	C3	C4	R 1	R ₂	
200fF	1pF	1pF	350Ω	1ΚΩ	
k	\mathbf{M}_{1}	M2-3, M5-6	M_4	Vdd	
0.38	35µm/20nm x6	60µm/20nm	80µm/20nm	0.8V	

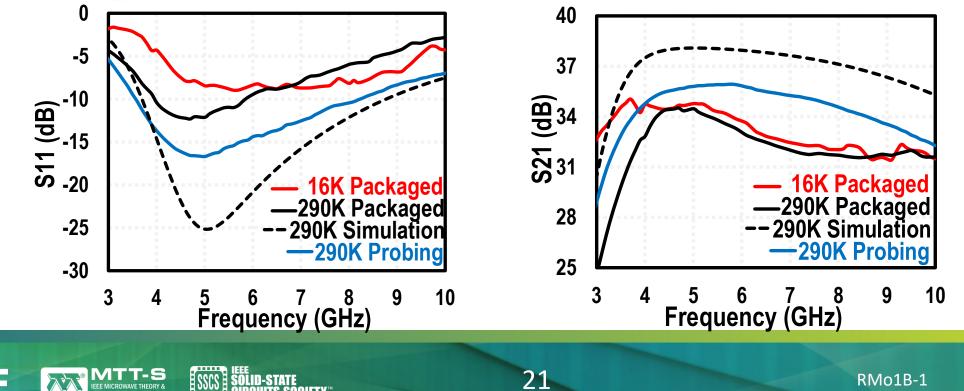
RM<u>01B-1</u>



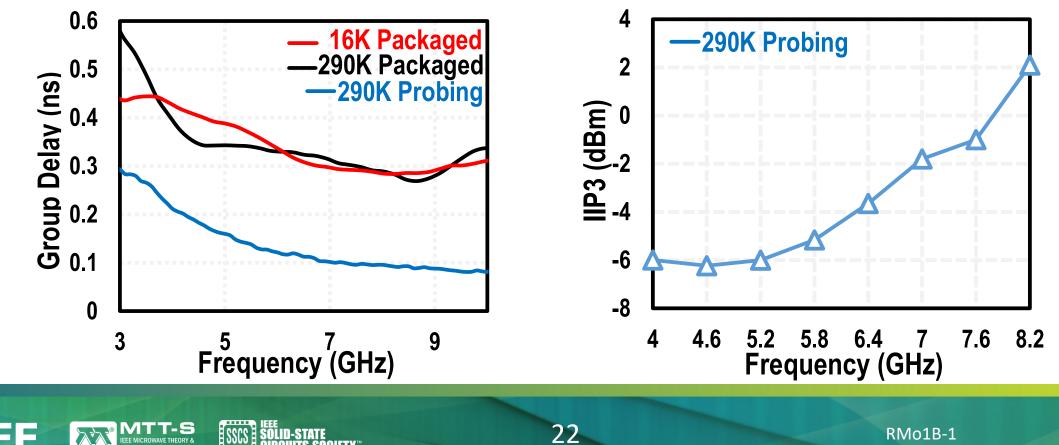
- The design is implemented in GlobalFoundries 22nm FDSOI CMOS technology
- The chip is packaged in a custom designed chassis within the cryogenic station

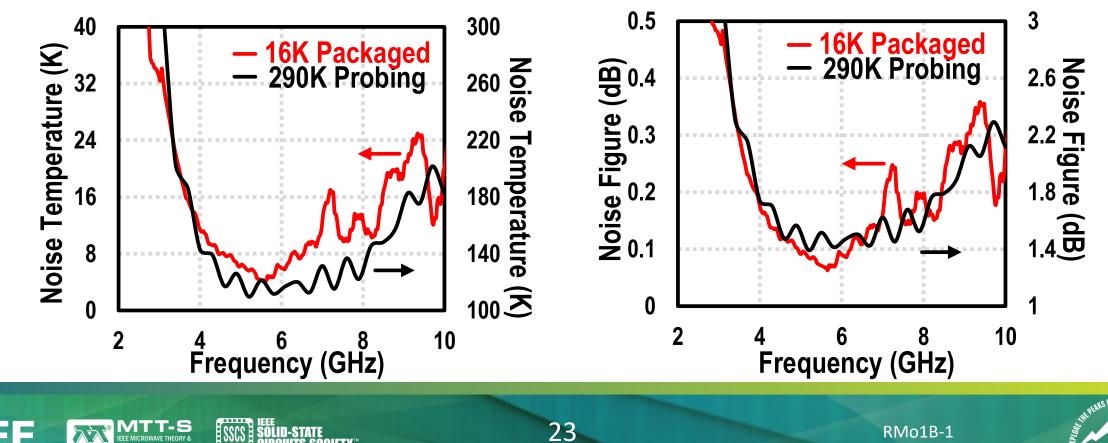
Cryogenic Measurement Setup

ÖLID-STATE



880um Chip Microphotograph


- The design is measured at 16K and 300K
- At 300K, S₁₁<-10dB from 3.6GHz to 8.2GHz with 34~35.9dB gain
- At 16K, S₁₁<-5.6dB from 4.2GHz to 9.2GHz with 31.4~34.7dB gain


- At 300K, the total group delay is less than 0.3ns and $IIP_3 > -6dBm$
- At 16K, the total group delay is less than 0.42ns

- At 300K, the measured noise temperature is 115.1 ~153K (1.41dB~1.79dB)
- At 16K, the measured noise temperature is 4.5~21.5K (0.065dB~0.3dB)

DENVER2022

- Introduction
- Circuit Implementation
 - Simultaneous Noise and Power Matching
 - Transistor Optimization
 - Transformer Feedback
 - Cryogenic Applications
- Measurement Results

MTT-S

SSCS

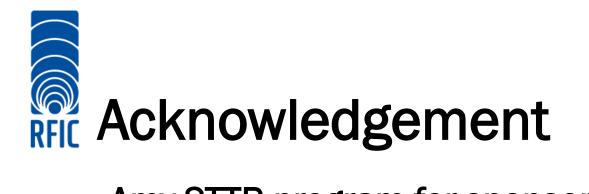
IEEE SOLID-STATE

• Summary

Comparison Table


	This	This Work JSSC '21 [4]		TMTT '18 [1]		TCS '19[2]		JSSC '18[9]		
Topology	SNPM + XFMR FB + Current Reuse + Cascode		Cascode +R-C loading + XFMR load		3 Stage Cascade		Cascode CS		Noise Cancelling	
Vdd (V)	0.8		1.4		2		1.8		1.4	
Frequency (GHz)	3.6~8.2	4.2~9.2	4.1~7.9	4.6~8.2	0.3	~14	2.0~2.12		0.1~0.5	
Meas. Temp. (K)	300	16 [†]	300	4.2	300	4	300	77	N/A	N/A
Power (mW)	28	21	51.1	39	100	12	N/A	15	300	4.2
Gain(dB)	34~ 35.9	31.4~ 34.7	35.5~ 36.5	39.2~ 44.8	39.8~ 41.6	40.2 ~ 43	15	18	35~40	50~58
Noise Temp. (K)	115.1~ 153	4.5~21.5	54.7~ 101.2	16.3~ 48.4	60.7~ 125	2.2~13	121.5~ 159.2	35.4	35.4 ~ 96.7	6.8~ 62.7
NF $(dB)^{}$	1.41~1.79	0.065~0.3	0.73~1.26	0.23~0.65	0.80~ 1.51	0.03 ~ 0.18	1.52 ~ 1.9	0.48	0.8 ~ 1.25	0.1 ~ 0.85
\$11 (dB)	-16.7~ -10.2	-8.9~ -5.6	-22~ -12	-26~ -5.8	-22~ -1	-22 ~ - 6	-10 ~ -6	-40 ~ -15	-9~ -5	-7 ~ -3
Area (mm ²)	0.23*		0.72		1.5		N/A		0.249	
Technology	22nm CMOS FDSOI		40nm CMOS		100nm InP HEMT		0.18µm CMOS		0.16µm CMOS	

†: Temperature is limited by testing equipment. *: Core Area. ^: NF is referring to 300K


MTT-S IEEE MICROWAVE THEORY &

- The implemented cryogenic CMOS LNA provide wideband 4.2GHz to 9.2GHz operation bandwidth for quantum applications.
- The implemented LNA provides broadband simultaneous noise and power matching using transformer feedback at cryogenic temperature.
- It paves the way for future quantum applications with large scale qubits integration

- Amy STTR program for sponsoring this design
- Dr. Joe Qiu for supporting this design
- GlobalFoundries for chip fabrication
- Members at Georgia Tech GMES lab for technical discussion

[1] C.-C. Chiong, et al., "Low-Noise Amplifier for Next-Generation Radio Astronomy Telescopes: Review of the State-of-the-Art Cryogenic LNAs in the Most Challenging Applications," IEEE Microw Mag, vol. 23, no. 1, pp. 31–47, 2022, doi: 10.1109/mmm.2021.3117318.

[2] E. Charbon et al., "15.5 Cryo-CMOS Circuits and Systems for Scalable Quantum Computing," 2017 IEEE Int Solid-state Circuits Conf Isscc, pp. 264–266, 2017, doi: 10.1109/isscc.2017.7870362.

[3] Y. Peng, et al., "A Cryogenic Broadband Sub-1-dB NF CMOS Low Noise Amplifier for Quantum Applications," leee J Solid-st Circ, vol. 56, no. 7, pp. 2040–2053, 2021, doi: 10.1109/jssc.2021.3073068.

[4] B. Patra et al., "Cryo-CMOS Circuits and Systems for Quantum Computing Applications," in IEEE Journal of Solid-State Circuits, vol. 53, no. 1, pp. 309-321, Jan. 2018, doi: 10.1109/JSSC.2017.2737549.

[5] M. W. Pospieszalski, "Interpreting Transistor Noise," leee Microw Mag, vol. 11, no. 6, pp. 61–69, 2010, doi: 10.1109/mmm.2010.937733.

[6] E. Zailer, et al., "Wideband LNA Noise Matching," leee Solid-state Circuits Lett, vol. 3, pp. 62–65, 2020, doi: 10.1109/lssc.2020.2986645.

[7] B. Cardoso Paz et al., "Performance and Low-Frequency Noise of 22-nm FDSOI Down to 4.2 K for Cryogenic Applications," in IEEE Transactions on Electron Devices,

vol. 67, no. 11, pp. 4563-4567, Nov. 2020, doi: 10.1109/TED.2020.3021999.

[8] B. Patra, et al., "Characterization and Analysis of On-Chip Microwave Passive Components at Cryogenic Temperatures," in IEEE Journal of the Electron Devices Society, vol. 8, pp. 448-456, 2020, doi: 10.1109/JEDS.2020.2986722.

