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Introduction
• Cryogenic electronic circuits applications

➢ Deep space applications, Planetary applications, Radioastronomy, …

➢ Quantum computation  applications

→ Classical electronic controller as intermediate  interface between mK environment 

and room temperature environment

Typical receiver for radioastronomy[1]
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Introduction
• Cryogenic CMOS controller

→ Existing large scale integration capability 

→ Compatible with semiconductor Qubits

• Cryogenic CMOS low noise amplifier (LNA)

• Required in most of the read-out systems to 

amplify the extremely weak read-out signal

• Frequency multiplex requires a broadband 

operation

Example of multi-channel classical interface to a 

quantum processor. [2]
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Introduction

• Cryogenic LNA specifications for gate dispersive qubits read-out [3]

❑ Operation Frequency: 4GHz – 8GHz

❑ Noise figure (NF): < 0.8 dB 

❑ Gain: > 40dB

❑ Power: < 50mW (1mW/qubit)
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Broadband power-noise 

matching is needed
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Prior State-of-the-Art CMOS LNA
[4] Patra, et al., IEEE JSSC, 2017[3] Peng, et al., IEEE JSSC, 2021

• Frequency: 4.6-8.2 GHz

• NF: 0.23-0.65dB

• Inductive degenerated Common source

• Frequency: 0.1-0.5 GHz

• NF: 0.1-0.8dB

• Noise Canceling

No broadband simultaneous 

power-noise matching
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Simultaneous Power and Noise Matching

• Simple equivalent noise circuit for MOSFET device has been studied previously [5]

• Gate Induced Noise Current Source: 𝒊𝒏𝒈
𝟐 =

𝟒𝐤𝐓∆𝒇𝜹𝝎𝟐𝑪𝒈𝒔
𝟐

𝟓𝒈𝒅𝟎

• Drain Noise Current Source: 𝒊𝒏𝒅
𝟐 = 𝟒𝐤𝐓∆𝒇𝜸𝒈𝒅𝟎

• Noise Source Correlation Coefficient: 𝒄 =
𝒊𝒏𝒅
∗ 𝒊𝒏𝒈

𝒊𝒏𝒅
𝟐 𝒊𝒏𝒈

𝟐

𝜹: The Excess Gate Noise Coefficient

𝜸: The Excess Drain Noise Coefficient

𝒈𝒅𝟎 =
gm

𝛼
is the output conductance when 

Vds = 0V
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Simultaneous Power and Noise Matching

• As discussed in [6], this two-port network achieves the minimum noise figure when:

• Achievable minimum Noise figure is independent of the value of source inductor

ቊ
𝑮𝒐𝒑𝒕 = 𝝎𝑪𝒈𝒔𝝍

𝑩𝒐𝒑𝒕 = −𝝎𝑪𝒈𝒔𝝃
, 𝑾𝒉𝒆𝒓𝒆

𝝍 = 𝜶 𝟏 − 𝒄 𝟐 𝜹/𝟓𝜸
𝝃 = 𝟏 − 𝜶|𝒄| 𝜹/𝟓𝜸
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Simultaneous Power and Noise Matching

• [6] shows that simultaneous power and noise matching is achieved when:

• 22nm CMOS FDSOI has low intrinsic Cgs at frequency band of interests

𝝍𝟐 + 𝝃𝟐 = 𝛏

→External Cgs is added to provide an additional degree of freedom
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Design Flow
• The noise parameters are dependent of frequency

• We follow the following design procedures:

൝
𝑮𝒐𝒑𝒕 = 𝝎(𝑪𝒈𝒔,𝒆𝒙𝒕 + 𝑪𝒈𝒔,𝒊𝒏𝒕)𝝍

𝑩𝒐𝒑𝒕= −𝝎(𝑪𝒈𝒔,𝒆𝒙𝒕+𝑪𝒈𝒔,𝒊𝒏𝒕)𝝃

Obtain

𝝍 = 𝜶 𝟏 − 𝒄 𝟐 𝜹/𝟓𝜸

𝝃 = 𝟏 − 𝜶|𝒄| 𝜹/𝟓𝜸

𝝍𝟐 + 𝝃𝟐 = 𝝃

?Satisfy

Cgs,ext tuning

Obtain

ቊ
𝑪𝒈𝒔,𝒆𝒙𝒕 + 𝑪𝒈𝒔,𝒊𝒏𝒕

𝒈𝒎
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Core Transistor Optimization
• First common source transistor width is 

fixed at 220 µm/20nm

• Break down the large transistor into 

several smaller parallel transistors

→ Improve minimum noise figure

→ Improve associated gain

• In this design:

• 6 unit-transistors are combined

• Unit transistor size: 35 µm/20nm
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Transformer Feedback
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• Coupling factor (k) increase → Improve Power 

Matching

• Strongly coupled drain and source → Unstable 

Amplifier

• Optimum noise refection coefficient (Γopt) remains nearly unchanged
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Transformer Feedback
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• Add input matching network 

→ Achieve broadband simultaneous noise-power matching

→ Add loss which degrades total noise figure

• Broadband power and noise matching can be achieved by properly 

chosen k and input matching network
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Cryogenic Applications

• Based on [7], the following changes are 

considered to design the active devices at 

cryogenic temperature:

• Increase threshold voltage (Vth)

→ Apply backgate bias can shift the Vth,cryo= Vth,RT

• Increase the effective mobility due to the suppression of 

phonon scattering contribution

→ Affects power matching conditions

→ Simulate the response with increased gm

[7] Paz, et al., IEEE TED, 2020
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Cryogenic Applications

• Based on [8], the following changes 

are considered to design the passive 

EM components at cryogenic 

temperature:

• Metal conductivity increases five-folds 

→ Metal Impurity

• The substrate resistivity increases 1000x

→ Carrier Freeze-Out Effect 
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Circuit Schematic
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• The implemented circuit schematic and components values
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Measurement

• The design is implemented in GlobalFoundries 22nm FDSOI CMOS technology

• The chip is packaged in a custom designed chassis within the cryogenic station  
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Measurement
• The design is measured at 16K and 300K

• At 300K, S11<-10dB from 3.6GHz to 8.2GHz with 34~35.9dB gain

• At 16K, S11<-5.6dB from 4.2GHz to 9.2GHz with 31.4~34.7dB gain
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Measurement
• At 300K, the total group delay is less than 0.3ns and IIP3 > -6dBm

• At 16K, the total group delay is less than 0.42ns
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Measurement
• At 300K, the measured noise temperature is 115.1 ~153K (1.41dB~1.79dB) 

• At 16K, the measured noise temperature is 4.5~21.5K (0.065dB~0.3dB) 

100

140

180

220

260

300

0

8

16

24

32

40

2 4 6 8 10

N
o

is
e 

T
em

p
er

at
u

re
 (

K
) N

o
ise T

em
p

eratu
re (K

)

Frequency (GHz)

290K Probing
16K Packaged

1

1.4

1.8

2.2

2.6

3

0

0.1

0.2

0.3

0.4

0.5

2 4 6 8 10

N
o

is
e 

F
ig

u
re

 (
d

B
) N

o
ise F

ig
u

re (d
B

)

Frequency (GHz)

290K Probing
16K Packaged



24 RMo1B-1

Outline
• Introduction

• Circuit Implementation

• Simultaneous Noise and Power Matching

• Transistor Optimization

• Transformer Feedback

• Cryogenic Applications

• Measurement Results

• Summary



25 RMo1B-1

Comparison Table
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Summary

• The implemented cryogenic CMOS LNA provide wideband 4.2GHz to 

9.2GHz operation bandwidth for quantum applications.

• The implemented LNA provides broadband simultaneous noise and 

power matching using transformer feedback at cryogenic temperature.

• It paves the way for future quantum applications with large scale qubits 

integration
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